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Abstract
We study spectra of p-adic Schrödinger-type operators with random radial
potentials in two different models. Spectral properties of nonrandom 2-adic
Schrödinger-type operators are also investigated.
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1. Introduction

The initial impetus to the development of the p-adic mathematical physics, and in particular
of the p-adic quantum theory, was given by the hypothesis about a possible non-Archimedean
structure of space–time at sub-Planck distances, which takes origin in the inequality

�x � lpl =
√
hG

c3
.

Here x is an uncertainty in a length measurement, h is the Planck constant, c is the velocity
of light and G is the gravitational constant. This inequality was proved in quantum gravity
(string theory). It implies that at extremely small distances smaller than the Planck length
lpl (approximately 10−35 m) a measurement of distances is impossible and therefore the so-
called Archimedean axiom of measurement does not hold. So we have to replace the usual
Archimedean geometry, described by means of real numbers, by the non-Archimedean one, if
we want to describe processes at sub-Planck distances. The convenient number fields are the
p-adic number fields Qp (p is some prime integer), because of the non-Archimedean triangle
inequality |x + y|p � max{|x|p, |y|p} (|·|p is here the p-adic norm), which gives rise to
the wanted properties. (For more information about the origin of the p-adic physics and the
corresponding historical overview see [10].)

One important topic in the non-Archimedean quantum theory is the investigation of
spectral properties of a p-adic counterpart for Schrödinger operator, the so-called p-adic
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Schrödinger-type operatorDα +V (x). The (fractional) differentiation operator over the p-adic
numbers

(Dαϕ)(x) = 1 − pα

1 − p−α−1

∫
Qp

|y|−α−1
p (ϕ(x − y)− ϕ(x)) dy

was first introduced in [11] and investigated in [9, 11]. (Here the integration is meant with
respect to Haar measure on the additive group of field of p-adic numbers Qp. For the basic
concepts from p-adic analysis used in this paper we refer the reader to [10].) The ‘degree’
α (α > 0) of operator is an arbitrary positive real number. The value of α is inessential for
further consideration: all results are valid for any α > 0.

Especially, well investigated are (nonrandom) Schrödinger-type operators with radial
potentials, i.e. operators of the form Dα + V (|x|p) (see [2, 3, 9, 10]). It is, however, known
from the real case that random operators (with random potentials) not only often give the more
realistic description of real processes than nonrandom ones but also the study of their properties
leads to the better understanding of the properties of nonrandom operators (for example,
the study of spectral properties of nonrandom one-dimensional Schrödinger operators with
power-decaying potentials was influenced by the study of Schrödinger operators with decaying
random potentials, see [6–8] for the further information). So it is interesting to consider not
only deterministic Schrödinger-type operators but also their random counterparts.

In the present paper we consider a Schrödinger-type operator with a random radial
potential, i.e. with the radial potential that forms a random field. It means that V (pl) are
random variables on a probability space (�, F, P) for all integers l. The first case under
consideration in this paper is the p-adic analogue of the Anderson model, which was considered
first by the author in [4]. In the Anderson model, we have

V (|x|p) =
+∞∑

n=−∞
vn(ω)δ(p

n − |x|p)

where vn(ω) are independent random variables. According to [5], chapter 9, we assume
that � = ×∞

n=−∞R, F is the σ -algebra generated by cylinder sets, P is the product measure∏∞
n=−∞ Pn (Pn is the distribution of vn, i.e. Pn(A) = P(vn(ω) ∈ A) for any Borel set A

of real numbers) and the random variables are realized in such a way that vn(ω) = ω(n).
We assume that vn are distributed on [an, bn], where an ∈ R

⋃{−∞}, bn ∈ R
⋃{+∞}

(i.e. supp(Pn) ⊂ [an, bn])). We will consider the Anderson model in section 2. Then, in
section 3 we consider another random model, namely, the model with random deviations.

The basic results from the nonrandom case which will be used in the present paper, were
obtained by Kochubei in [2, 3]. We formulate the corresponding theorems here:

Theorem 1.1 (due to [2, 3]). Let p �= 2. Let V (|x|p) be locally bounded. We denote with
H ′ the operator (Dαϕ)(x) + V (|x|p)ϕ(x) defined in L2(Qp) with the domain D(Qp) (the
subspace of test functions, for the definition see [10]). Then the operator H ′ is closable
and its closure (H = H̄ ′) is self-adjoint. Moreover, H can be represented as the direct sum
H = H1

⊕
H2, where H1 and H2 are both self-adjoint and H2 has a complete system of

eigenvectors. This representation is independent of the potential V (|x|p). The eigenvalues of
H2 are pαN +V (pl−N ) (N ∈ Z, l = 2, 3, . . .), each with finite multiplicity (p− 1)2pl−2 (if all
eigenvalues are different, otherwise we have to add multiplicities).

Theorem 1.2 (due to [2, 3]). Let p �= 2. Let the potential V (|x|p) satisfy the condition
V (pl) → 0 for l → −∞. Then the essential spectrum ofH1 coincides with the set of all finite
limit points of the sequence V (pl), l � 0.
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Let in the above-defined Anderson model the sequences (an)n<0 and (bn)n<0 be bounded.
Then it makes sense to consider the operatorHω

1 , because it follows from the boundedness of
the sequences (an)n<0 and (bn)n<0 that for almost all (with respect to P) ω from� theorem 1.1
is applicable and the operatorHω = Dα +V ω(|x|p) has the decompositionHω = Hω

1

⊕
Hω

2 ,
which is independent of the potential and therefore independent of ω. The following theorem
was stated in [4]:

Theorem 1.3. Let the random field (vn)n∈Z be as above, let vn be identically distributed for
n � 0 and let the sequences (an) and (bn) satisfy the condition an → 0 and bn → 0 for
n → −∞. Then σess

(
Hω

1

) = supp(P0) a.s. (almost sure) with respect to P.

The proof of this theorem is based on the theorems 1.1 and 1.2, so it was proved in [4] only
for the case p �= 2, but theorem 1.3 is also true in the case p = 2, because theorems 1.1, 1.2
remain valid in the case p = 2 also (we have only to replace in the statement of theorem 1.1
the set {pαN + V (pl−N )}N∈Z,l=2,3,... by the set {2αN + V (21+l−N)}N∈Z,l=2,3,...) and the proof of
theorem 1.3 is actually independent of the exact value of p. The ideas of the proofs of theorems
1.1 and 1.2 in the case p = 2 are quite similar to those in the case p �= 2, so it is somewhat
surprising that the corresponding proofs were not yet published somewhere. We sketch these
proofs in section 4 (appendix) at the end of this paper for the aim of completeness.

2. Spectrum of the operator H2 in Anderson model

Although the spectrum of the operator Hω
2 is completely known for each fixed ω (we have

σ(Hω
2 ) = the closure of the set {pαN + vl−N(ω)}N∈Z,l�2 in the case p �= 2 and σ(Hω

2 ) =
the closure of the set {2αN + v1+l−N (ω)}N∈Z,l�2 in the case p = 2), the question about the
location of the essential spectrum of H2 is not so easy to answer. Generally, we can describe
the essential spectrum of H2 as the set of all limit points of the double-indexed sequence
{pαN + vl−N(ω)}N∈Z,l�2 (if p �= 2) or {2αN + v1+l−N(ω)}N∈Z,l�2 (p = 2) which depends
in a rather subtle way on the potential V (ω). The situation is much easier if we are only
looking for the a.s. essential spectrum in the random Anderson model. This shows the
following theorem:

Theorem 2.1. Let (an)n<0, (bn)n<0 in the Anderson model be bounded implying that H2(ω)

can be defined a.s. Let vn be identically distributed for n � 0. Then σess
(
Hω

2

)
is with

probability 1 equal to the closure of the set
∞⋃

n=−∞
{pαn + supp(P0)}.

Proof. For fixed ω the essential spectrum of Hω
2 is the set of all finite limit points of the

set {pαN + vl−N(ω)}N∈Z,l�2 in the case p �= 2 or {2αN + v1+l−N (ω)}N∈Z,l�2 in the case
p = 2. Note that (if p �= 2) the point pαN0 + vl0−N0(ω) lies in the σess(H2) if and only if
pαN0 + vl0−N0(ω) = pαN + vl−N(ω) for infinite many different pairs (l, N) (in the case p = 2
we need to replace vl−N by vl+1−N and vl0−N0 by v1+l0−N0 ).

We will consider only the case p �= 2. The case p = 2 can be treated identically taking
into account the just-announced replacement.

Denote B = ⋃∞
n=−∞{pαn + supp(P0)}. We have to prove the following assertion:

P(A0) = 0, where

A0 = {ω ∈ �| the set of limit points of (pαn + vl−n(ω)) �= B̄}
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(B̄ means the closure of B). We have A0 = A1
⋃
A2, where

A1 = {ω ∈ �|∃ a limit point of (pαn + vl−n(ω)) /∈ B̄}
and A2 = {ω ∈ �|∃x0 ∈ B̄ : x0 is not a limit point of (pαn + vl−n(ω))}. So it is enough to
prove P(A1) = P(A2) = 0. To do this we enumerate all finite subsets of Z × {N\{1}} by Bk ,
k = 1, 2, . . . and all rational numbers by rn, n = 1, 2, . . . . We denote by M the set of pairs
(m, n) of positive integers satisfying the condition

(rn − 2−m, rn + 2−m)
⋂
B �= ∅ (1)

and denote Um,n,N = (rn − 2−m − pαN , rn + 2−m − pαN ).
Then

A1 =
⋃

(m,n)/∈M
Ãm,n

where

Ãm,n = {ω|pαN + vωl−N ∈ (rn − 2−m, rn + 2−m) for infinitely many pairs (N, l)}.
We have for the set Ãm,n the following representation:

Ãm,n =

 ∞⋂
l=2

⋃
j�l

⋃
N∈Z

{
vωj−N ∈ Um,n,N

}⋃

⋂
N∈Z

⋃
|j |�|N |

∞⋃
l=2

{
vωl−j ∈ Um,n,j

} . (2)

From (m, n) /∈ M follows Um,n,N1

⋂
supp(P0) = ∅ for every N1 from Z, so we have

P
{
vl1 ∈ Um,n,N1

} = 0 for each pair (l1, N1). This implies, taking into account (2), that
P(Ãm,n) = 0. So we have P(A1) = 0.

For A2 we have the representation

A2 =
∞⋃
k=1

⋃
(m,n)∈M

Ak,m,n

where

Ak,m,n = {ω|pαN + vωl−N /∈ (rn − 2−m, rn + 2−m) if and only if (N, l) /∈ Bk}.
We now prove that for each k ∈ N and (m, n) from M holds P(Ak,m,n) = 0. Then

P(A2) = 0 will follow from the σ -additivity of the probability. Let k and (m, n) be fixed.
(m, n) ∈ M implies (1), so some integer N0 exists, such that

(rn − 2−m, rn + 2−m)
⋂

{pαN0 + supp(P0)} �= ∅.
Denote by Bk,N0 the set {l : (N0, l) ∈ Bk}. This set is evidently finite. We can representAk,m,n
in the following form:

Ak,m,n =
⋂

(N,l)/∈Bk

{
vωl−N /∈ Um,n,N

} ⋂
(N,l)∈Bk

{
vωl−N ∈ Um,n,N

}
.

So the set Ak,m,n is measurable. We have the inclusion

Ak,m,n ⊂
⋂

l /∈Bk,N0

{
vωl−N0

/∈ Um,n,N0

}
from which follows

P(Ak,m,n) �
∏

l /∈Bk,N0

Pl−N0

(
R
∖
Um,n,N0

) = 0
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since Pl−N0 = P0 for each l � N0 and since Um,n,N0

⋂
supp

(
P0
) �= ∅ and therefore

P0
(
R
∖
Um,n,N0

) = 1 − P0
(
Um,n,N0

)
< 1. �

3. The model with random deviations

In the present section we consider Schrödinger-type operators with radially symmetric random
potentials V (|x|p) of the following form:

V (|x|p) =
+∞∑

n=−∞
vnδ(p

n+ξn(ω) − |x|p) (3)

where (vn)n∈Z is a sequence of real numbers satisfying the condition vn = v0 for all n � 0
(so (vn)n�0 is a constant sequence) and ξn(ω) are random variables on a probability space
(�, F, P ) for all integers n. We assume (ξn) to be a sequence of independent identically
distributed discrete random variables with integer values such that M from Z exists for which
holds ξn � M a.s. for all n. Denote qk = P(ξn = k) for k ∈ Z (qk is independent of n by
assumption) and let µξ be the measure

∑+∞
k=M qkδ(x − k). Then µξ is the distribution of ξn

for any n (so µξ(A) = P(ξn(ω) ∈ A) for any Borel set A of real numbers).
We can assume without loss of generality that (see [1], chapter 9, or [5], chapter 1)

(�, F, P ) = (×∞
n=−∞R, F,µ

)
, where F is the σ -algebra generated by cylinder subsets of

�,µ is the product measure
∏∞
n=−∞ µξ and the random variables are realized in such a way

that ξn(ω) = ω(n).
We introduce new random variables ηk, k ∈ Z, by the formula

ηk =
+∞∑

n=−∞
δ(n + ξn(ω)− k).

Lemma 3.1. ηk are identically distributed.

Proof. We enumerate all finite subsets of Z byGl, l = 1, 2, . . . Then we have the equality

P {ηk = n0} =
∑

Gl :|Gl |=n0

∏
j∈Gl

P (ξj = k − j)
∏
j /∈Gl

(1 − P(ξj = k − j))

which shows that P {ηk = n0} is actually independent of k for each n0 (|Gl| is the number of
elements in Gl). �

Lemma 3.2. Let Nξ = card {qk > 0} satisfy Nξ > 1, i.e. Nξ ∈ {2, 3, . . . ,∞} (in the case
Nξ = 1 the potential is actually nonrandom since ξn = a a.s. for some a for all n, so this
exclusion is quite natural). Then

P

( ∞⋂
n=1

∞⋃
j=n

{ω : ηj (ω) = m}
)

= 1 for any m = 0, 1, . . . , Nξ

and

P({ω : ηj (ω) = m}) = 0 for any j and for any m �= 0, 1, 2, . . . , Nξ .

Proof. Let T+ and T− be the right and left shifts on the space �, i.e. T±ω(n) = ω(n± 1) and
let m be from {0, 1, . . . , Nξ }. We now show that the events

⋂∞
n=1

⋃∞
j=n{ω : ηj (ω) = m} are
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T±-invariant. We have

T±({ω : ηj (ω) = m}) = T±

({
ω :

+∞∑
n=−∞

δ(n + ω(n)− j) = m

})

=
{
ω :

+∞∑
n=−∞

δ(n + ω(n± 1)− j) = m

}

=
{
ω :

+∞∑
n=−∞

δ(n + ω(n)− j ∓ 1) = m

}
= {ω : ηj∓1(ω) = m} (4)

implying

T±


 ∞⋃
j=n

{ω : ηj (ω) = m}

 =

∞⋃
j=n∓1

{ω : ηj (ω) = m}

and

T±


 ∞⋂
n=1

∞⋃
j=n

{ω : ηj (ω) = m}

 =

∞⋂
n=1

∞⋃
j=n

{ω : ηj (ω) = m}.

The shifts T± are the metrically transitive automorphisms of the probability space � = RZ

(see [5], example 1.14), i.e. each T±-invariant event has probability 0 or 1, so it follows that

P


 ∞⋂
n=1

∞⋃
j=n

{ω : ηj (ω) = m}

 ∈ {0, 1}.

So, it will be sufficient now to show that P
(⋂∞

n=1

⋃∞
j=n{ω : ηj (ω) = m}) > 0. From the

continuity of probability follows

P


 ∞⋂
n=1

∞⋃
j=n

{ηj (ω) = m}

 = lim

n
P


 ∞⋃
j=n

{ηj (ω) = m}

 � lim

n
P ({ηn(ω) = m}).

Since ηn are identically distributed we can consider one fixed n0. We have to prove
P
({
ηn0(ω) = m

})
> 0 for each m = 0, . . . , Nξ . We assume first m > 0. Let us choose

ni, i = 1, . . . ,m so that qn0−ni > 0 (we can do it since m � Nξ ). Then we have

m⋂
i=1

{
ω : ξni = n0 − ni

}⋂ ⋂
j �=ni

{
ω : ξj �= n0 − j

} ⊂ {
ηn0(ω) = m

}
implying

P
{
ηn0(ω) = m

}
�

m∏
i=1

P
{
ω : ξni = n0 − ni

} ∏
j �=ni

P {ω : ξj �= n0 − j }

=
m∏
i=1

qn0−ni
∏
j �=ni

(
1 − qn0−j

)
> 0

where we have used the independence of ηk and the property
∑
qi = 1, implying∏

(1 − qi) > 0 (qi �= 1 for all i since Nξ > 1).
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For m = 0 we have

P
{
ηn0(ω) = 0

}
�

∞∏
j=−∞

P {ω : ξj �= n0 − j }
∞∏

j=−∞

(
1 − qn0−j

)
> 0

by the same reason as in the casem > 0. The second statement of the present lemma is trivial.
�

Theorem 3.3.

(i) Let the potential (3) satisfy the conditions Nξ < ∞ and vn → 0, n → −∞ (Nξ is
as in lemma 3.2 equal to card{qk > 0}). Then the operator Hω = Dα + V ω has with
probability 1 the decomposition Hω = Hω

1

⊕
Hω

2 , which is independent of ω, and we
have with probability 1

σess
(
Hω

1

) = {0, v0, 2v0, 3v0, . . . , Nξ v0}
and

σess
(
Hω

2

) = {0, v0, 2v0, . . . , Nξ v0}
⋃ ∞⋃

m=−∞
(pαm + {0, v0, 2v0, . . . , Nξ v0}). (5)

(ii) The decompositionHω = Hω
1

⊕
Hω

2 and the formula for the essential spectrum σess
(
Hω

1

)
σess

(
Hω

1

) = {0, v0, 2v0, 3v0, . . . , Nξ v0} a.s.

remain valid if we replace the conditions Nξ < ∞ and vn → 0, n → −∞ by the
condition vn = 0 for n < M2 and vn = v0 otherwise, where M2 is some number (so Nξ
can in this case be equal to ∞, in which case we have σess(H1) = {0, v0, 2v0, 3v0, . . .}).

Proof.

(i) From Nξ < ∞ it follows that M1 ∈ Z exists, such that ξn � M1 a.s., implying
δ(pn+ξn−pl) = 0 for all n < l−M1. On the other hand, ξn � M implies δ(pn+ξn−pl) = 0
for all n > l −M . So we have a.s. the equality

V (pl) =
l−M∑

n=l−M1

vnδ(p
n+ξn(ω) − pl) (6)

from which it follows that V is a.s. locally bounded. Therefore, we can apply
theorem 1.1 to obtain the announced decomposition.

From theorem 1.2 we know that σess(H1) is equal to the set of all limit points of the
sequence (V (pl))l>0. Equation (6) implies that

V (pl) = v0

l−M1∑
n=l−M

δ(pn+ξn(ω) − pl)

for all l > M . Then the statement of the present theorem concerning σess(H1) follows
from lemma 3.2.

It was already discussed in section 2 that σess(H2) is equal to the set of all
limit points of the double-indexed sequence (pαm + V (pl−m))m∈Z,l�2 if p �= 2 and
2αm + V (21+l−m))m∈Z,l�2 for p = 2. To obtain (5) we note that (6) implies that V (pl) is
(uniform in ω) bounded and that all limit points we are looking for are therefore obtained
by the limiting process m → −∞ by fixed l or by the limiting process l → ∞ by fixed
m. Now it is sufficient to apply lemma 3.2. (ii) It is clear that we have only to consider
the case Nξ = ∞. In this case we have instead of (6) the formula
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V (pl) =
l−M∑
n=M2

vnδ(p
n+ξn(ω) − pl) = v0

l−M∑
n=M2

δ(pn+ξn(ω) − pl) (7)

implying V (pl) → 0, l → −∞. We apply lemma 3.2 to obtain the statement about σess(H1)

as in (i). �

Appendix. 2-adic nonrandom Schrödinger-type operator

The case p = 2 often requires the exceptional consideration in the p-adic analysis. This is
also the case in the study of p-adic Schrödinger-type operators. The reason for this is that the
eigenfunctions of the operator Dα have somewhat different properties for p �= 2 and p = 2.
In spite of these differences we can use the ideas from [2] to analyse the spectral properties of
Schrödinger-type operatorDα + V (|x|p).

We recall that the operator Dα is for each p self-adjoint on L2(Q2) and has a complete
system of eigenfunctions [10]. In the case p = 2 the set of eigenvalues ofDα is the sequence
(2αN)N∈Z and to each eigenvalue 2αN corresponds the following system of eigenfunctions
(they are sometimes called Vladimirov functions):

ψlN,k,ε = 2
N−1

2 δ(|x|2 − 21+l−N)χ2(ε2l−2Nx2 + 2l−N−kx)

for l = 2, 3, . . . , k = 0, 1 and ε = 1 + ε12 + · · · + εl−22l−2 (εi ∈ {0, 1}) and

ψ1
N,k,0 = 2

N−1
2 [ω(2N |x − k2N−2|2)− δ(|x − k2N−2|2 − 21−N)]

for k = 0, 1, where χ2(·) is a canonical additive character of Q2(χ2(x) = e2π i{x}2 , where {x}2

is a fractional part of x, see [10]) and ω and δ are defined by

δ(a) =
{

1 a = 0
0 a �= 0

ω(a) =
{

1 a � 1
0 a > 1.

It is clear that for every l � 2 and every N, k and ε holds

supp
(
ψlN,k,ε

) ⊂ {x ∈ Q2 : |x|2 = 21+l−N }. (8)

In the case l = 1 we need the more detailed information on the eigenfunctions. For the
function ψ1

N,0,0 we have the representation

ψ1
N,0,0 = 2

N−1
2




0 |x|2 > 21−N

−1 |x|2 = 21−N

1 |x|2 < 21−N .
(9)

For the functions ψ1
N,1,0 we have a somewhat more complicated formula:

ψ1
N,1,0 = 2

N−1
2




0 |x|2 > 22−N

−1 |x|2 = 22−N and |x − 2N−2|2 = 21−N

1 |x|2 = 22−N and |x − 2N−2|2 < 21−N

0 |x|2 < 22−N

.

Particularly holds for all N:

supp
(
ψ1
N,1,0

) = {x ∈ Q2 : |x|2 = 22−N } and supp
(
ψ1
N,0,0

) = {x ∈ Q2 : |x|2 � 21−N }.
(10)

Schrödinger-type operatorDα + V (|x|p) with locally bounded V (|x|p) is initially defined on
the subspace D(Qp) consisting of all locally constant functions with compact supports (see
[10]). As usual in mathematical physics the question of particular interest is the self-adjoint
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realization of this operator. We will see that such realization is given exactly as in the case
p �= 2 by the operator H defined by

Hφ(x) = Dαφ(x) + V (|x|p)φ(x) on the subspace

{φ ∈ L2(Q2) : Dαφ(x) + V (|x|p)φ(x) ∈ L2(Q2)}. (11)

We denote by H1 and H2 the closed subspaces of L2(Q2) spanned by functions ψlN,k,ε with
l = 1 (in which case holds ε = 0) and l � 2 respectively. The following lemma is the 2-adic
analogue of the result from [2]:

Lemma 4.1. The subspaces H1 and H2 reduce the operator H.

Proof. The proof is essentially the same as in [2]. The only properties of the eigenfunctions
ψlN,k,ε which have to be used are that their supports lie in the sets of the form {x ∈ Q2 : |x|2 =
2m} for l � 2 and {x ∈ Q2 : |x|2 � 2m} for l = 1. �

Let Hj be the part of the operator H on the subspace Hj , j = 1, 2. The operator H2

has the especially simple structure: H2 is self-adjoint and possesses a complete system of
eigenfunctions. (Particularly we have σ(H2) = σess(H2) = {2αN + V (21+l−N)}N∈Z,l�2.) In
contrast to the p-adic case with p �= 2 we can proceed to represent the operator H1 as the
orthogonal sum. We denote by H1,0 and H1,1 the closed subspaces of L2(Q2) spanned by
functions ψ1

N,k,0 with k = 0 and k = 1, respectively.

Lemma 4.2. The subspaces H1,0 and H1,1 reduce the operatorH1.

Proof. The proof is exactly the same as that of the previous lemma. �

LetH1,j be the part of the operatorH1 on the subspace H1,j , j = 0, 1. The operatorH1,1

is self-adjoint and has a complete system of eigenfunctions in H1,1. All eigenvalues of H1,1

(which are 2αN + V (22−N)) are simple, so we have

σ(H1,1) = {2αN + V (22−N)}N∈Z

whereas the essential spectrum σess(H1,1) consists of all accumulation points of the sequence
(V (2k))k>0. Let us denote by H1,0,− and H1,0,+ the closed subspaces of L2(Q2) spanned by
functions ψ1

N,0,0 with N � ν and N > ν respectively (ν is some integer). We define the
function Vν by Vν(|x|2) = V (|x|2)ω(2−ν |x|2). Thus we have Vν(|x|2) = 0 for every x with
|x|2 > 2ν and Vν(|x|2) = V (|x|2) in the opposite case. Therefore holds

(H1,0 − Vν)f (x) =
{
Dαf (x) |x|2 � 2ν

(Dα + V (|x|2))f (x) |x|2 > 2ν

from which follows (H1,0 − Vν)|H1,0,+ = Dα|H1,0,+ .

Lemma 4.3. The subspaces H1,0,− and H1,0,+ reduce the operatorH1,0 − Vν .

Proof. The proof is similar to those of two previous lemmas. See [2, 3] for more details. �

Theorem 4.4 (=theorem 1.1 for p = 2). Defined by (11) operator H is self-adjoint and has
the decomposition

H = (
Vν +

(
Dα |H1,0,− +Wν

)⊕Dα |H1,0,+

)⊕H1,1 ⊕H2

where Wν(|x|2) = V (|x|2)− Vν(|x|2).
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Proof. The proof follows from three previous lemmas (see also [2]). �

Lemma 4.5. The essential spectrum of the operatorWν on H1,0,− coincides with the set of all
finite accumulation points of the sequence {V (2l)}l>ν .
Proof. It is clear that the spectrum ofWν is contained in the closure of the set 0 ∪ {V (2l)}l>ν .
Actually, each element of this set is an eigenvalue, because from (9) it follows that for each
N � −ν the function

φ(N) = 2
1−N

2 ψ1
N,0,0 +

−ν∑
n=N+1

2n−N−12
1−n

2 ψ1
n,0,0

has the property supp φ(N) ⊂ {x : |x|2 � 2ν} ∪ {x : |x|2 = 21−N }, so φ(N) is the eigenfunction
corresponding to the eigenvalue V (21−N).

It remains now only to prove that those eigenvalues, which appear in the sequence
{V (2l)}l>ν a finite number of times, have finite multiplicities. Let φ ∈ H1,0,− be an
eigenfunction of Wν corresponding to one such eigenvalue V (2l0). Let us consider Fourier
series expansion for φ : φ = ∑−ν

N=−∞ CNψ
1
N,0,0. Then fromWνφ = V (2l0)φ follows now

−ν∑
N=−∞

CNWνψ
1
N,0,0 =

−ν∑
N=−∞

V (2l0)CNψ1
N,0,0.

We have for x from the set {x : |x|2 = 2m}(m > ν) : ψ1
N,0,0 = 2

N−1
2 if −N � m,

ψ1
N,0,0 = −2

N−1
2 if −N + 1 = m and ψ1

N,0,0 = 0 if −N � m − 1. So we have for all x
with {x : |x|2 = 2m} the equality

−m∑
N=−∞

CN(V (2m)− V (2l0))2
N−1

2 = (V (2m)− V (2l0))C1−m2
−m

2 . (12)

We can add (V (2m)− V (2l0))C1−m2
−m

2 to both sides to obtain
−m+1∑
N=−∞

CN(V (2
m)− V (2l0))2

N−1
2 = 2(V (2m)− V (2l0))C1−m2

−m
2 .

On the other hand, the left-hand side must be equal to (V (2m)− V (2l0))C2−m2
−m+1

2 according
to the formula (12), so we have 2C1−m2

−m
2 = C2−m2

−m+1
2 for all m such that V (2m) �= V (2l0).

Since the set of all m such that V (2m) = V (2l0) is finite by assumption, we can conclude that
all the coefficients CN with N < N1 = 1 − max{m : V (2m) = V (2l0)} are defined by the
value of CN1 . So the space of eigenfunctions corresponding to V (2l0) is finite-dimensional.

�

Theorem 1.2 in the case p = 2 follows now from the last lemma and from theorem 4.4
exactly as it is in the case p �= 2 (see [2, 3]).
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